Phorbol esters potentiate evoked and spontaneous release by different presynaptic mechanisms.
نویسندگان
چکیده
Phorbol esters enhance release from a variety of cell types. The mechanism by which phorbol esters potentiate presynaptic release from central neurons is unclear, although effects of phorbol esters both on the readily releasable pool of vesicles and on presynaptic calcium channels have been shown. Using confocal microscopy and the fluorescent styryl dye FM 1-43, we have examined the effects of phorbol-12,13-dibutyrate (PDBu) on presynaptic vesicle turnover at individually identified synapses in dissociated cultures obtained from neonatal rat hippocampus. Using different dye staining and destaining protocols we were able to resolve two effects of PDBu. Potentiation of evoked release by PDBu was insensitive to calcium channel antagonists, suggesting that this effect results from an increased number of vesicles in the readily releasable pool. Since we observed no effect of PDBu on the size of the total recycling vesicle pool, we conclude that phorbol esters alter the equilibrium between reserve and readily releasable pools. An additional effect of PDBu on spontaneous release was observed. This effect was antagonized by nifedipine but not omega-conotoxin GVIA or omega-agatoxin IVA. We conclude that PDBu influences spontaneous and evoked release by two different mechanisms: through L-type calcium channels and through an increase in the proportion of recycling vesicles in the readily releasable pool. In addition to further clarifying the mechanism of action of phorbol esters, these results suggest that phorbol esters may be a useful tool with which to probe the function of the readily releasable pool of presynaptic vesicles at CNS synapses.
منابع مشابه
Phorbol esters modulate spontaneous and Ca2+-evoked transmitter release via acting on both Munc13 and protein kinase C.
Diacylglycerol (DAG) and phorbol esters strongly potentiate transmitter release at synapses by activating protein kinase C (PKC) and members of the Munc13 family of presynaptic vesicle priming proteins. This PKC/Munc13 pathway has emerged as a crucial regulator of release probability during various forms of activity-dependent enhancement of release. Here, we investigated the relative roles of P...
متن کاملMultiple effects of phorbol esters in the rat spinal dorsal horn.
Spinal cord slice preparation and intracellular recording techniques were used to examine the effects of phorbol esters on the sodium- and calcium-dependent action potentials, the excitatory synaptic transmission, the basal (resting) and the dorsal root stimulation-evoked release of 9 endogenous amino acids, including glutamate and aspartate, and the responsiveness of the rat dorsal horn neuron...
متن کاملCalcium-dependent isoforms of protein kinase C mediate glycine-induced synaptic enhancement at the calyx of Held.
Depolarization of presynaptic terminals that arises from activation of presynaptic ionotropic receptors, or somatic depolarization, can enhance neurotransmitter release; however, the molecular mechanisms mediating this plasticity are not known. Here we investigate the mechanism of this enhancement at the calyx of Held synapse, in which presynaptic glycine receptors depolarize presynaptic termin...
متن کاملProtein kinase C and presynaptic modulation of acetylcholine release in rabbit hippocampus.
1. The involvement of protein kinase C in the presynaptic modulation of stimulated acetylcholine release was investigated in rabbit hippocampus. 2. Slices of the rabbit hippocampus, labelled with [3H]-acetylcholine, were superfused with medium and stimulated electrically during superfusion. 3. The protein kinase C activating phorbol ester 4 beta-phorbol 12,13-dibutyrate (4 beta-PDB) enhanced th...
متن کاملPhorbol esters target the activity-dependent recycling pool and spare spontaneous vesicle recycling.
Using electrophysiology and styryl dye imaging, we studied the effect of phorbol 12-myristate 13-acetate (PMA) on activity-dependent and spontaneous vesicle recycling. In electrophysiological experiments, we found that the PMA effect depended on the maturational state of the synapses. Spontaneous neurotransmitter release from nascent synapses without a functional readily releasable pool (RRP) w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 20 21 شماره
صفحات -
تاریخ انتشار 2000